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Supporting a Storm: The Impact of
Community on #GamerGate’s Lifespan

J. David Smith, Student Member, IEEE and My T. Thai, Senior Member, IEEE

Abstract—Over the past half-decade, we have seen repeated examples of “firestorms” on social media. These often-negative events
focus enormous bursts of attention on particular individuals or topics. While they often die out within days, in some cases they persist
far longer. In this work, we study one such storm, #GamerGate, with the goal of identifying key differences between it and other,
smaller events. We find that this storm has a distinct pattern of growth that differentiates it from previous events: rather than exploding
quickly and burning out, it grows more slowly and develops an underlying community structure. Further, we find that participation in this
community structure is a key indicator of whether a user will continue using the hashtag over the following year. Lastly, we find that
users that become active later in the storm’s lifetime contribute significantly to this community structure, though they appear to interact
less overall with “older” users. Our results are the first to suggest that the formation of network structures play a significant and
fundamental role in determining the lifecycle of these large-scale firestorms.
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1 INTRODUCTION

As online social networks have grown, so to has grown
the scale of online firestorms: social media events typically
consisting of an explosion of negative activity directed at a
particular user or topic. Most of the time, these storms are
but a flash in the pan–lasting a few days in the majority of
cases [1]. There are, however, exceptions to this rule. In this
work, we study one such exception: #GamerGate.

A storm of harassment born of a smear campaign against
game developer Zoë Quinn [2], [3], #GamerGate is the
largest and longest-lasting firestorm ever observed. The
instigating blog post made its way to 4chan on 16 August,
2014 [4], [5]. It quickly morphed into a conspiracy theory,
which spread to Twitter and Reddit. It was not until August
28th that actor Adam Baldwin first coined #GamerGate in
a tweet linking two videos on The Quinnspiracy, giving the
burgeoning campaign a name divorced from its roots.

Nearly four years later, the hashtag still sees limited
activity: 144 tweets using the hashtag appeared between the
20th and 21st of May, 2018. While the furor has undoubtedly
died down, we are interested in understanding what led it to
last so long in the first place. Despite its notoriety, there has
been little study of the large-scale patterns present in data on
#GamerGate. Chatzakou et al. [6] present the first study of
#GamerGate users viewed through their Twitter posts. They
find that ca. 2016 these users tend to be more active and
have more followers and “friends” (Twitter’s official term
for users one follows) than a random sample of users. We
build on this by going back to the beginning: August 2014.

In particular: we take advantage of archival data to study
the structure of this event during its first year. Through
this, we develop an understanding of structural features that
distinguish it from events that have been studied previously
(e.g. [1]). Our focus on structural features also distinguishes
this from the prior work on #GamerGate, which has a heavy
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emphasis on textual features due to the harassment attached
to the event [6]. In summary, our main contributions are:

• We show that community structure quickly devel-
oped among #GamerGate users, and that community
participation is a key predictor of long-term activity.

• We find that, unlike events studied previously,
#GamerGate does not feature explosive growth.
Rather, it grows slowly and steadily—and in doing so
alters our understanding of social network dynamics.

• We demonstrate the conductance of a graph partition
is robust under the kind of sub-sampling present in
the Twitter data, even on a 1% sample.

Roadmap. Using historical data available on archive.org
[7], we study the participants of #GamerGate in 2014. We
begin in Sec. 2 by showing both that #GamerGate is dif-
ferent from storms studied in prior work. Based on an
intuition from contemporary reporting on #GamerGate, we
next study the presence of community structure among
#GamerGate users (Sec. 3). We find that #GamerGate users
interact with one another at a significantly higher rate than
random users or users involved in other storms. We follow
this with a comparison of the user-base in 2014 to August–
September 2015 (Sec. 4), finding that interacting with other
users was highly correlated with continued activity. This is
followed by a brief survey of related works (Sec. 5) and a
discussion of the broader implications of this work (Sec. 7).

1.1 Data Collection
We draw data from the archival data hosted on archive.
org [7]. This data is a complete reproduction of the 1%
“Spritzer” Twitter sample. The Spritzer sample has been
shown to be an unbiased representation of the Twitter popu-
lation [8]. We collect data from the entire period of #Gamer-
Gate activity in 2014 (August–December), as well as a set
from Aug–Sep 2015. For comparison, we use the tweets of
random users active in the Aug–Sep 2014 time period.

We additionally collect data for 16 of the 20 storms
studied in [1] from the same 1% sample to use in our
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TABLE 1: Storms from Lamba et al. [1] to which we compare. All data is from the 1% stream to ensure accurate comparisons.

“# Rel. Tweets” is the number that use or mention the hashtag or user in question, and “Observed Dur.” is the amount of
time between the first and last such tweet. Note that only 6 weeks of post-event data are collected for other storms.

Storm Event Date First Tweet Last Tweet Observed Dur. # Tweets # Rel. Tweets # Users

#whyimvotingukip 20 May 2014 6 May 2014 30 Jun 2014 6 weeks 44,590 4,263 4,125
@TheOnion 24 Feb 2013 10 Feb 2013 6 Apr 2013 6 weeks 40,870 3,557 4,453
@David Cameron 5 Mar 2014 19 Feb 2014 15 Apr 2014 6 weeks 57,830 2,898 3,468
#myNYPD 22 Apr 2014 1 Apr 2014 1 Jun 2014 6 weeks 50,039 1,850 1,749
#muslimrage 17 Sep 2012 3 Sep 2012 28 Oct 2012 6 weeks 23,817 1,543 1,466
@KLM 29 Jun 2014 15 Jun 2014 9 Aug 2014 6 weeks 19,327 1,457 1,676
#CancelColbert 27 Mar 2014 1 Mar 2014 1 May 2014 5 weeks 38,512 1,453 1,378
#AskThicke 30 Jun 2014 16 Jun 2014 10 Aug 2014 6 weeks 24,824 1,194 1,167
@GaelGarciaB 29 Jun 2014 15 Jun 2014 9 Aug 2014 6 weeks 10,626 1,016 1,107
@celebboutique 20 Jul 2012 6 Jul 2012 30 Aug 2012 6 weeks 11,357 718 749
#AskJPM 6 Nov 2013 23 Oct 2013 17 Dec 2013 5 weeks 7,053 491 461
#VogueArticles 10 Sep 2014 27 Aug 2014 21 Oct 2014 5 weeks 5,605 301 290
@SpaghettiOs 6 Dec 2013 22 Nov 2013 1 Jan 2014 4 weeks 3,522 297 296
@fafsa 25 Jun 2014 11 Jun 2014 5 Aug 2014 6 weeks 4,637 271 290
#McDStories 18 Jan 2012 4 Jan 2012 28 Feb 2012 6 weeks 2,764 253 252
#AskBG 17 Oct 2013 3 Oct 2013 27 Nov 2013 1 weeks 2,793 218 213

#GamerGate 28 Aug 2014 1 Aug 2014 1 Jan 2015 22 weeks 565,826 69,676 14,984
#GamerGate (2015) - 1 Aug 2015 1 Oct 2015 8 weeks 61,378 7,494 2,615
Random - 1 Aug 2014 1 Oct 2014 - 277,834 - 7,112

comparisons in Sections 2 and 3. Three are excluded because
data is not available from the time period in which they
occur (#qantas, #QantasLuxury and #NotIntendedToBeA-
FactualStatement, all from 2011). A fourth (@UKinUSA) is
excluded because too few tweets appear in the 1% sample.
We collect data from two weeks before to six weeks after
each event. When comparing #GamerGate to other storms,
we use a similar interval: [−2,+6] weeks from 28 Aug 2014.

A two-pass process is used to extract data from the
stream. First, we identify the set of related users–i.e. those
that used the hashtag or mentioned the listed user. We then
collect every tweet by these users in the specified obser-
vation period. Table 1 shows detailed information about
the collected data. Due to the large amount of activity on
the #GamerGate hashtag during the 2014 time period, we
elected not to use snowball sampling to get related hashtags.

Taking a cue from [6], we follow a simple scheme for
spam removal: if a user uses more than two hashtags per
tweet on average, or has an average normalized inter-tweet
Levenshtein distance of less than 0.7 we label them a spam
user and remove them. These values were selected based
on manual inspection of the filtered accounts, and end up
removing roughly 2% of users from each dataset.

1.2 Hypothesis Testing Methods & Coefficients

In this work, we rely on statistical hypothesis testing to
quantify the accuracy of our claims. Two tests in particu-
lar are used throughout our work: the Mann-Whitney U
(MWU) test, a nonparametric rank-sum test useful both
for questions of ordering and homogeneity of integral and
real variables [9]; and the χ2 test, a nonparametric test of
independence useful for categorical variables [10]. The null
hypotheses for these tests are that neither the distribution
of X nor of Y is stochastically greater than the other; and
that the variables X and Y are independent, respectively. In

this work, we generally leave the null hypotheses implied
as they are dependent only on the test use and the groups
X and Y being tested. We use the implementations of these
available in the SciPy package [11], and in particular use the
2× 2 contingency-table-based χ2 test provided.

We note that the large sample sizes we use mean that
these tests will mark even very small differences significant.
Thus, we also present various effect sizes to quantify how
large the impact is. For the χ2 test, we use the standard
Pearson’s correlation coefficient φ, which varies from [−1, 1]
and indicates how well correlated the test statistic is with
group membership; φ = 0 indicates no correlation [10].
For the MWU test, we use two values. First, the common
language effect size (CLES) c, which reports the fraction of
all pairs that explicitly support the hypothesis. Second, the
rank-biserial correlation r, which is analagous to φ [12].

We select a family-wise p-value (i.e. the probability of
rejecting any null hypothesis tested in this work when
it should be accepted) of α∗ = 0.01. After Bonferroni
correction [10] for the m = 202 hypotheses tested in the
development of this work, we have a corrected significance
level of α = α∗/m = 4.95× 10−5. Tests whose p-value is
below α are marked in bold. Outside of tables, we write
p ≈ 0 if the p-value is more than 100 times smaller than α.

1.3 Ethical Considerations
As noted previously, we make extensive use of social net-
work information in this work. This information was posted
publicly to Twitter, and thus is not sensitive or private infor-
mation. According to the guidelines posted by the IRB at our
institution, this study does not require additional review.
Further, nearly all of our analysis is done and presented in
aggregate form, where individual users cannot be identified.
This further mitigates the risk of individual harm.

Later in our work, we perform some analysis on notable
users. While any reader could reconstruct the list of notable
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Fig. 1: Number of observed tweets per day for each of
#GamerGate, #CancelColbert and #myNYPD.
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Fig. 2: Distribution of observed #hashtag-using tweets per
user for #GamerGate, #CancelColbert and #myNYPD over
the six weeks since the first hashtag usage. The box covers
the inter-quartile range: from the 25th to 75th percentiles.

users we use based on our description, we do not list
the exact groups. This is due to the level of harassment
associated with #GamerGate; we do not wish to hand out
a list of targets to those who may have participated in
harassment and may later find this work. This concern is
motivated in part by the weaponization of prior academic
work by #GamerGate members [13]. We do name certain key
individuals, such as Adam Baldwin and Zoë Quinn, as these
individuals are already inextricably linked to #GamerGate.

2 IS #GAMERGATE DIFFERENT?

To ground our analysis, we first seek to confirm that
#GamerGate has substantial differences from what has been
previously observed. We accomplish this by comparing to
a subset of the storms studied by Lamba et al. [1]. Note
that since we do not have access to the same 10% stream
they used, we collect the data anew from the 1% stream
(c.f. Sec. 1.1) and reproduce their results. Thus, all com-
parisons between storms are made with data taken from
the 1% stream. When drawing figures, we primarily show
the storms #myNYPD and #CancelColbert as these are the
events highlighted in [1]. Following this, we compare to the
results of Chatzakou’s study of #GamerGate users in 2016
[6]. In particular, we pose the following questions:

Research Question 1. Is #GamerGate significantly different
than the storms studied by Lamba et al. [1]?
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Fig. 3: Observed tweets
per hour in the first week.
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Fig. 4: Unique active users
over the first 4 weeks.

Research Question 2. Did #GamerGate change significantly
between its start in August 2014 and the observations of
Chatzakou et al. [6] in 2016?

We first qualitatively show that #GamerGate was a much
larger storm. It is immediately clear from Fig. 1 that the rate
of activity outside of spikes is much higher for #GamerGate
than for either of #myNYPD or #CancelColbert. Figure 2
indicates that this difference is caused by more than a small
number of users in the tail of the distribution: even in the
head of the distribution, #GamerGate users tend to be more
active. Thus, we can conclude that #GamerGate has higher
activity overall due to typical users being more active.

These qualitative observations on #GamerGate’s size
hold up under quantitative analysis. For the sake of read-
ability, we only include comparisons to #myNYPD; unless
otherwise specified, these results generalize to all storms in
question. By the MWU test, we find that users that tweeted
about #GamerGate did so a moderate amount more than
those who tweeted about #myNYPD (p ≈ 0, c = 0.38,
r = 0.36). Similarly, #GamerGate saw significantly more
daily active users than other storms (p ≈ 0, c = 0.95,
r = 0.90) and activity (in tweets-per-day) was higher overall
(p ≈ 0, c = 0.95, r = 0.91). However, merely examining
the magnitude of the storm misses subtler differences.

Looking more closely at the initial period of these storms,
it becomes apparent that #GamerGate differs not only in
activity level but also in the shape of its growth. Figure 3
shows that, contrary to the explosive expectations of typical
firestorms, #GamerGate began with a slow burn. The first
two-and-a-half days after the first mention have almost no
activity, followed by a jump mid-way through day 3. Note
that this spike rivals the peak activity on #CancelColbert.
This is underscored by Figure 4: while #myNYPD and
#CancelColbert rapidly gain users in the first day and then
level out, #GamerGate gains users at a lower but steady rate.
Even the second spike in #CancelColbert activity–visible just
before the two week mark–does little to disrupt this pattern.
The day-to-day change in unique users over the observa-
tion period is not significantly higher for #GamerGate than
#myNYPD (p = 0.59, c = 0.48, r = −0.03) or any other
storm. Upon investigation, this appears to be due to dips
in the number of daily active users of #GamerGate after the
initial growth shown in Fig. 4.

Based on this, we test whether the number of followers
amongst #GamerGate users grew faster than the follower



4

counts in other storms. Specifically: we calculate the dif-
ference between follower counts at the first and last tweet
of each user that tweeted at least twice in the eight-week
observation period. This approach is taken both because
(1) the true follower accounts are contained in each tweet
object, and (2) a simpler time-binning approach is infeasible
due to data sparsity (almost all bins are empty). Unlike
previous tests, which are consistent across all storms, this
one is highly variable. While it is significant for many storms
(e.g. #whyimvotingukip (p ≈ 0, c = 0.56, r = 0.13)), it
is not for all—including #myNYPD (p = 1.00, c = 0.44,
r = −0.10). The effect sizes for this test are uniformly small,
indicating that–despite significance–the dependence of fol-
lower count on storm participation is small. We observe
similar results when considering the number of “friends”
a user has (p = 3.28× 10−2, c = 0.51, r = 0.03). These
outcomes together lead to our first result:
Result 1. #GamerGate is significantly different from prior

storms, with a slower start, continued growth over time,
and higher activity overall.

Lastly, we briefly compare the network properties of
#GamerGate users to random users. Where Chatzakou et
al. [6] find that #GamerGate users in 2016 tended to have
more friends and followers and to tweet more than a
uniform random sample of users, we find that in August
2014 the opposite holds: #GamerGate users had slightly
fewer followers (p ≈ 0, c = 0.58, r = 0.16) and tweets
(p = 1.89 × 10−5, c = 0.52, r = 0.04) than our random
sample. They didn’t have a significantly different number of
friends (p = 1.43× 10−4, c = 0.52, r = 0.04). There are a
number of potential explanations for this. We will examine
one such explanation—that low-activity users simply did
not continue participating—in Sec. 4. Regardless of the
cause, the effect is clear and leads to the following:
Result 2. #GamerGate users in 2014 had fewer followers and

tweets than a random sample. Although the difference is
small, this is the opposite of the relation seen in 2016 [6].

3 THE PRESENCE OF COMMUNITY

Having established that #GamerGate is different, we next
explore one potential cause: community structure. Specif-
ically, we hypothesize that a community formed among
#GamerGate users early in the storm, which could help
explain its longevity. This hypothesis is motivated by two
observations. First, we see that discussion of the event in
its historical context often includes discussion of certain key
users, such as @Int Aristocrat, Adam Baldwin, Zoë Quinn,
and Anita Sarkeesian. It is natural to wonder whether
communities formed around these notable pro- and anti-
#GamerGate users, or whether they are merely proxies for
discussion of the participants. Second, and unlike the other
events we study, a sub-reddit (r/KotakuInAction) be-
came a hot-bed of discussion related to the hashtag early in
its lifetime. These observations lead us to several questions:
Research Question 3. Were one or more communities

present amongst #GamerGate users? If so, does this
distinguish it from other events?

If so, it leads to two follow-up questions:
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Fig. 5: Distribution of conductance ψ(S) and modularity
Q as measured on each G′ ∈ G for 8 arbitrary ground-
truth synthetic communities (leftmost within each group)
and those same communities with (left-to-right) 33%, 66%
and 100% of members replaced by random users.

Research Question 4. Was this community structure newly-
formed or pre-existing?

Research Question 5. Is this community structure related to
certain “notable” users?

3.1 Measuring Community Structure on a 1% Sample
At a high level, there are two approaches we could take
to test our hypotheses about the presence of community.
The first is community detection, which takes as input the
network G, and produces a set of likely communities Si

as output. Alternately, we could consider the problem as
community testing, which takes as input the network G
and a potential community S, then produces as output
the “quality” of S. The testing problem can be seen as a
sub-problem of detection: community detection inherently
is about finding communities that are high-quality. In this
work, we are ultimately interested only in measuring the
quality of a single community defined by our hypotheses as
a means of understanding the relationship between specific
users. Thus, we take the community testing approach.

However, the relationship between detection and testing
has led to the development of effective metrics for commu-
nity quality. Fortunato provides a historical overview of the
subject [14]. In this section, we will focus on two widely-
used methods in particular: modularity and conductance.
Definition 1 (Modularity). Suppose each node i ∈ V of a

graph G = (V,E) is assigned a label Ci ∈ C. Then the
modularity of this assignment is [14]:

Q =
1

2|E|
∑
i,j∈V

(
Aij −

kikj
2|E|

)
δ(Ci, Cj)
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where m = |E|, A is the adjacency matrix of G, and
δ(Ci, Cj) is 1 iff Ci = Cj and 0 otherwise.

Definition 2 (Conductance). The conductance of set of nodes
S ⊂ V, S 6= ∅ on a positively-weighted graph G is

ψ(S) =
w(δS)

min(vol(S), vol(V \ S))
where w(δS) =

∑
u∈S,v 6∈S wuv and vol(S) =∑

u∈S
∑

(u,v)∈E wuv is the total outgoing weight of S.

Modularity is of interest to us due to its widespread,
successful use. Researchers over the past two decades have
applied modularity to detect communities on a wide va-
riety of networks [15]. However, modularity has a natural
mismatch with our problem: it is framed as a measure
for evaluating the quality of a system of communities, not
an individual community like the potential #GamerGate
community we wish to study. While it is easy enough to take
a one-vs-rest approach to community labeling, it is unclear
if modularity will remain effective under this modification.

Conductance, on the other hand, has seen frequent use
in measuring the quality of real-world communities [16]
despite being less useful for global community detection than
modularity [15]. This is partly due to its definition in terms
of a single community S—which happens to align with the
testing problem we wish to solve.

Each of these metrics operates on a network, which
in our case will be the Twitter mention network that is
constructed as follows: On Twitter, a mention takes the form
@screen_name in the body of a tweet. If the screen name
belongs to a real user, Twitter parses it and stores this user’s
ID in the tweet’s metadata; this metadata is present in the
archive we use. We treat a user u mentioning a user v as a
sign of unidirectional interaction and create an edge (u, v)
with weight equal to the count of such mentions.

Before applying these metrics to our Twitter data, we
first apply them to a synthetic graph (generated via [17])
containing 1000 nodes with power-law degree (with ex-
ponent τ1 = 3) and community-size (exponent τ2 = 1.5)
distributions, along with labelled communities. To mimic
the mention network, we weight each edge with a “mention
count” we ∈ [1, 100] according to a power-law distribution.1

Our 1% sub-samples G′ ∼ G are then constructed by
sampling an observed edge weight for each edge e from a
binomial distribution w′e ∼ B(we, 0.01); any edges with
w′e = 0 are then removed. Finally, nodes with no in- or out-
bound edges are removed. We then sample 1000 such sets,
denoted G = {G′}. These graphs preserve, on average, 25%
of all nodes in V and 3.6% of all edges in E. Thus despite
working with a 1% sample, we observe a substantially larger
fraction of the synthetic network G.

A good metric will produce substantially different values
the synthetic communities and random sets of nodes, even
under sub-sampling. Fig. 5 shows that while conductance
accomplishes this, the “one-vs-rest” approach to modularity
does not.2 Fig. 5a shows a notable shift as we move from

1. This distribution was chosen because it produced a similar count
distribution to what we see in our #GamerGate data after sub-sampling.

2. We have preliminary results indicating that if every community is
labeled, modularity is robust to the sub-sampling. However, labeling
every community on Twitter is beyond the scope of this work.

TABLE 2: Comparing the mention behavior of storm partic-
ipants to a set of random users via the χ2 test, with the null
hypothesis being that mention behavior is independent of
set membership. ψ shows the conductance of the storm.

Storm p χ2 φ ψ

@KLM 0.00 2,450.46 0.19 0.86
#CancelColbert 1.42 × 10−275 1,258.13 0.13 0.90
@celebboutique 3.40 × 10−230 1,049.33 0.12 0.90
@David Cameron 3.60 × 10−249 1,136.63 0.12 0.93
#myNYPD 2.11 × 10−107 484.63 0.08 0.94
#muslimrage 1.15 × 10−48 214.94 0.06 0.95
#whyimvotingukip 3.05 × 10−29 126.01 0.04 0.96
#AskThicke 1.60 × 10−13 54.44 0.03 0.96
@fafsa 2.43 × 10−7 26.66 0.02 0.96
@TheOnion 2.45 × 10−7 26.64 0.02 0.97
#AskJPM 1.13× 10−3 10.60 0.01 0.97
#VogueArticles 1.27× 10−2 6.21 0.01 0.97
#AskBG 2.19× 10−1 1.51 0.01 0.97
#McDStories 9.18× 10−1 0.01 0.00 0.98
@SpaghettiOs 2.61× 10−1 1.26 −0.00 0.98
@GaelGarciaB 2.59× 10−4 13.35 −0.01 0.99

#GamerGate 0.00 20,934.74 0.40 0.67

ground-truth synthetic communities (leftmost within each
column) to completely random sets (rightmost). On the
other hand, while the distribution of modularity clearly
indicates that sometimes modularity identifies individual
community structure under sub-sampling, on average it
fails to separate it from a random set.

Based on this, we will use conductance as our measure
of community structure. We remark that conductance on a
directed network counts the rate of out-mentions provided
vol(S) ≤ vol(V \S). We can get an equivalent characteriza-
tion by looking at the rate of in-mentions (which is 1−ψ(S)),
and will occasionally speak in these terms.

3.2 Community Among the Storms
We now return to the question of whether the set of users
that used the #GamerGate hashtag contains community
structure. Figure 6 shows how the conductance changes
over time on each of several storms. To calculate the conduc-
tance of a storm, we define the set S as the set of users that
tweeted the relevant hashtag or username at least once in
the observation period. We assume that vol(S) < vol(V \S),
where V is the entire (unobserved) Twitter network and
calculate ψ(S) directly. Note that by Def. 2, w(δS) only
includes edges leaving S, and we therefore do not need to
scan for all edges entering S from V \ S. This allows us to
directly calculate ψ(S) = w(δS)/vol(S).

While most storms appear similar to what is shown in
Figures 6a or 6b, a large dip in conductance centered on
the date of the firestorm as seen in Fig. 6c. Contrast this
with the behavior shown for #GamerGate in Fig. 6d, which
reaches nearly the level of the dip for @KLM but sustains
it for weeks. A reference line corresponding to a random
sample of 10,000 users that tweeted between August and
September 2014 is shown in each plot. Seven weeks after
the first use of the #GamerGate hashtag, the conductance
of this set has dropped to 0.55. We remark that this is well
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Fig. 6: Conductance evaluated on 1-day bins. The value on a random sample during Aug–Sep 2014 is shown as the dashed
line. Most storms in our data look similar to (a) @TheOnion or (b) #CancelColbert.

TABLE 3: Comparing the mention behavior of #GamerGate
participants to storm participants via the χ2 test, with the
null hypothesis that mention behavior is independent of set
membership. ψ shows the conductance of the storm.

Storm p χ2 φ ψ

@KLM 2.14 × 10−236 1,077.86 0.12 0.86
#CancelColbert 0.00 2,532.43 0.18 0.94
@celebboutique 5.92 × 10−308 1,407.13 0.14 0.90
@David Cameron 0.00 5,215.90 0.24 0.93
#myNYPD 0.00 3,285.67 0.20 0.94
#muslimrage 0.00 2,952.19 0.19 0.95
#whyimvotingukip 0.00 4,275.49 0.23 0.96
#AskThicke 0.00 2,302.70 0.17 0.96
@fafsa 5.13 × 10−119 538.00 0.09 0.96
@TheOnion 0.00 6,025.09 0.26 0.97
#AskJPM 4.46 × 10−176 800.38 0.11 0.97
#VogueArticles 1.11 × 10−131 596.23 0.09 0.97
#AskBG 4.21 × 10−111 501.62 0.08 0.97
#McDStories 7.89 × 10−109 491.18 0.08 0.98
@SpaghettiOs 1.54 × 10−155 705.92 0.10 0.99
@GaelGarciaB 1.80 × 10−242 1,105.81 0.12 0.99

within the inter-quartile range for the “33% random” set on
each community shown in Fig. 5.

While conductance gives us a clear connection to com-
munity detection, it does not tell us anything about how
likely our observation is to be caused by random variation
in the sampling. Observe that we can frame the question
of “is there a community in set S?” as a hypothesis test
with H0 being “the distribution of in- and out-mentions is
independent of membership in S.” We therefore augment
our measurement of conductance with a set of χ2 tests that
compare the mention behavior of a set S to the mention
behavior of a group of random users. Significance on this
test indicates that the set S has mention behavior that is
unlikely to appear structured but actually be random. Table
2 shows the conductance and the results of this test on
#GamerGate and each storm we consider.

While we find significance in many cases, effect sizes
vary wildly. On @TheOnion, we have the correlation coef-
ficient φ = 0.02, a value that is exceptionally small—and
which highlights the fact that our relatively large samples
lead to significance even when the correlation with the vari-
able is small. On the other hand, with #CancelColbert and
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Fig. 7: Conductance of #GamerGate and sub-groups defined
by retweet behavior over the 2014 observation period.

@KLM we have φ = 0.13 and φ = 0.19, respectively. These
correlations remain small, but reflect the greater difference
seen in Fig. 6. However, these are scarcely half the value
seen for #GamerGate at φ = 0.40–an effect that is more than
ten times larger than what is seen for twelve of the storms,
and more than twice as large as the remainder.

Further, applying this test to #GamerGate with each of
the storms replacing the random set in turn, we find that
each storm has significantly lower in-group communication
than #GamerGate. Table 3 lists the results. The closest storm
is #McDStories (p ≈ 0, φ = 0.08), which is likely due
to a difference in scale. Compare the 69,690 mentions by
#GamerGate users to the 1,148 by #McDStories users within
each eight-week window. Thus, we have:
Result 3. #GamerGate users had a significantly higher rate

of mentioning other #GamerGate users than both a ran-
dom set and other storms. Further, it has a low conduc-
tance once the event begins and this conductance is sus-
tained over time. As a result, it seems highly likely that
one or more communities exist amongst #GamerGate
users and that this distinguishes it from other storms.

To answer RQ 4, we compare the weeks before the event
to the weeks after to see if there is a significant difference.
We expect this to be the case based on Fig. 6d, which shows
a large gap between the conductance before (0.87) and after
(0.54) day zero of #GamerGate. Unsurprisingly, adapting
the above χ2 test to compare the fifth and sixth weeks after
the first use of the hashtag to the two weeks prior to its
use reveals that the later period had a much higher rate
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Fig. 8: The #GamerGate mention network. Isolated users
are not shown. The central cluster contains primarily Pro-
#GamerGate users (blue) and Ungrouped users (green).
Anti-#GamerGate users (red) are spread throughout the
network, primarily in the periphery. Edges are colored ac-
cording to their source node. Generated using Gephi [18]
with the OpenOrd layout algorithm [19].

of in-mentions (p ≈ 0, φ = 0.29). Interestingly, we find
that this gap in conductance remains when we compare to
the last two weeks of December 2014 instead of weeks 5
& 6 (p ≈ 0, φ = 0.29). Further, there is not a significant
difference between weeks 5 & 6 and late December in the
rate of in-group mentions (p = 0.98, φ = 0.00)—as indicated
by Fig. 7. Taken together, we reach the following conclusion:
Result 4. The community structure among #GamerGate

users was newly formed, formed in the first few weeks,
and then remained over the following months.

Next, we consider the question of whether key influ-
encers are related to this community. To this end, we col-
lect the top thirty most-mentioned by #GamerGate users
in Aug–Dec 2014. After excluding @YouTube due to the
way it is used (as an automated mention via YouTube’s
share function), we are left with a list of 29 users. Manual
inspection of collected tweets reveals that most of these
users can be placed into two groups: Pro-#GamerGate (e.g.
Adam Baldwin, Milo Yiannapoulos) and Anti-#GamerGate
(e.g. Zoë Quinn, Brianna Wu). Seven of the top thirty do
not fall into either category. We construct sub-groups of the
overall GG group based on their retweet behavior: if a user
retweeted a notable Pro-GG user, they are placed in the
Pro-GG group, etc. Note that this method allows groups
to overlap. This method uses retweets, which broadcast
another user’s tweets on one’s own timeline, as indicators
of agreement. Prior work supports this interpretation, with
Metaxas et al. [20] remarking (emphasis ours):

Our findings show that retweeting indicates, not
only interest in a message, but also trust in the
message and the originator, and agreement with the
message contents.

TABLE 4: Fraction of mentions from Source to Target Group.
“Other” is the set of users not observed using #GamerGate.

Target Anti-GG Pro-GG Ungrouped Other
Source

Anti-GG 0.12 0.10 0.13 0.65
Pro-GG 0.06 0.40 0.21 0.32
Ungrouped 0.05 0.14 0.13 0.69

Figure 7 shows the conductance of the Pro- and Anti-GG
groups, along with ungrouped #GamerGate users. The con-
ductance of the overall #GamerGate is shown as a reference.
It is immediately clear that only the Pro-GG group, which
comprises 21.7% of all #GamerGate users, rivals the overall
GG group in in-mention behavior. Indeed, by the same test
used in Table 3 we find that this sub-group is more strongly
correlated with in-group mentions than the #GamerGate
group (p ≈ 0, φ = 0.46), although the conductance of the
overall group is slightly higher. On the other hand, the Anti-
GG group, with a paltry-in-comparison 8.7% of #GamerGate
users, is in-line with results on other storms–though still
significantly different from random (p ≈ 0, φ = 0.15). We
find it interesting that the un-grouped set of users (i.e. those
that neither retweeted a pro- or anti-GG user) maintains
both a larger correlation coefficient on this test (p ≈ 0,
φ = 0.22) and a lower conductance.

We also find that the mention behavior of users is cor-
related with the notable users they retweet. Table 4 shows
the fraction of mentions by each group’s members that go to
target group. Of the three sets (Pro, Anti, and Ungrouped)
only Pro-#GamerGate users have a larger fraction of in-
group mentions than mentions to other groups. Further, we
find that there is a significant relationship between retweet-
ing notable users and mentioning the “opposing” group:
retweeting a Pro-#GamerGate notable is correlated with
mentioning Anti-#GamerGate users more (p ≈ 0, c = 0.38,
r = 0.20). This is not the case for the Anti-#GamerGate
group (p = 1.00, c = 0.25, r = −0.11)–in fact, the opposite
relation is significant (p ≈ 0, c = 0.36, r = 0.11). While
the effect sizes are relatively small, the inversion of the
relationship indicates some degree of directionality to com-
munication amongst #GamerGate users. These results align
with our understanding of the harassment associated with
the event, though since we do not examine tweet content
here we cannot say more.

Taken together, these results indicate that there are sub-
stantive differences between different sub-groups of users
that tweeted with the hashtag. While the conductance we
observe for this is not exceptionally low, given the range of
values we see in Fig. 5 it is reasonable to believe that there
is some community structure within the Pro-GG group that
is lacking in the Anti-GG group.
Result 5. The Pro-#GamerGate sub-group has strong evi-

dence of community structure: a high correlation with
in-group mentions, low conductance. We do not see a
similar result for Anti-#GamerGate users.

4 #GAMERGATE: ONE YEAR LATER

As shown in Section 2, there are significant differences in the
attributes of #GamerGate participants ca. 2014 and ca. 2016.
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Fig. 9: Distribution of (a) how many times users of #Gamer-
Gate tweeted in 2014 (top) and 2015 (bottom), and (b) how
many times they tweeted using the hashtag #GamerGate.
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Fig. 10: The rate and count of users remaining active on
#GamerGate in 2015 binned by activity in Aug–Dec 2014.

This leads to a multitude of questions that all boil down to:
what changed? In this section, we explore the factors that
did (and did not) contribute to continued participation in
#GamerGate. To this end, we compare activity in August–
September 2015 to August–December 2014.

We begin by establishing the presence of continued activ-
ity. There are 2615 unique user accounts observed tweeting
on #GamerGate in August–September 2015. While this is
much lower than the 10,099 observed in the same time
frame in 2014, it is still nontrivial. Figure 9 shows the
distribution of tweet counts in August–September of both
2014 and 2015. We note the shift in the distribution of
overall tweets: users active on the hashtag in 2015 tended
to tweet more overall. This trend also appears in the num-
ber of tweets using the hashtag, but is less visible as the
average continues to be about one hashtagged tweet. Our
focus within this section is twofold: determining which users
remained active and which users became newly-active. With this
in mind, we pose the following questions:
Research Question 6. What factors are correlated with con-

tinuing activity on #GamerGate from 2014 to 2015?

Research Question 7. Is there a significant contingent of
newly-active users in 2015?

4.1 Remaining Users

We begin seeking an answer to RQ 6 with a group high-
lighted by Fig. 9: highly-active users. Fig. 10 shows the rate

TABLE 5: Correlation of continued activity with member-
ship in one of two disjoint retweet (RT) groups in our 2014
sample. φ is the correlation coefficient. FR is the ratio of
frequency of continued activity.

Group X RTs Group Y RTs p φ FR

Any Notable No Notable 7.61 × 10−134 0.20 3.63
Any Pro No Pro 1.36 × 10−225 0.26 4.95
Any Anti No Anti 2.35 × 10−11 −0.05 0.38

at which users remained active (the “conversion rate”) as
a function of the number of tweets observed in 2014, and
indicates that there is likely a relationship between activity
on the hashtag and continued activity in 2015. While having
≥ 10 observed tweets overall is negatively correlated with
continued activity (p ≈ 0, φ = −0.13), having ≥ 10
observed tweets using #GamerGate is the opposite (p ≈ 0,
φ = 0.18). Indeed, users in the latter group are more than
2.5 times as likely to remain active their less-active peers.

Relatedly, we find that #GamerGate users in 2015 were
more active than in 2014, but still not to the point observed
by Chatzakou et al. [6]. They tweeted more (p ≈ 0, c =
0.68, r = 0.37), had more followers (p ≈ 0, c = 0.71, r =
0.43), and followed more users (p ≈ 0, c = 0.70, r = 0.40)
than users in 2014. It seems likely that this is a result of less
active users “dropping out” of the event. Repeating these
comparisons with a random sample from Aug–Sep 2015,
we find only that #GamerGate users followed more–though
the effect is small (p ≈ 0, c = 0.55, r = 0.10). The tests
on tweets (p = 1.00, c = 0.42, r = −0.16) and followers
(p = 1.00, c = 0.48, r = −0.03) are both insignificant. It is
thus clear that more changes occur between this period and
the observations taken in 2016 by Chatzakou et. al.

Stepping beyond mere activity level, we find that users
that interacted frequently with other #GamerGate users
remained active significantly more often. In particular: users
that remained active were mentioned by #GamerGate users
4.03 times as much on average (p ≈ 0, c = 0.69, r = 0.48)
and were retweeted 4.58 times as much on average (p ≈ 0,
c = 0.63, r = 0.45) as those that dropped out. Further, users
that were mentioned at least once by a #GamerGate user
remained active 1.62 times as frequently (p ≈ 0, φ = 0.18)
and those that were retweeted at least once remained active
1.99 times as frequently (p ≈ 0, φ = 0.21).

Returning to the idea of “notable users” introduced at
the end of the previous section, we test for correlation
between retweeting of notable users and continued activity
on #GamerGate. Table 5 shows the results. Retweeting any
notable is correlated with remaining active, with those who
do so sticking around more than 3.5 times as often. Similarly,
those who retweeted a Pro-GG user remain active about 5
times as often as those who do not. However, these results
are tempered by the relatively low correlation coefficients:
φ ≈ 0.26 indicates that there is likely a sizeable correlation,
but that the magnitude of these frequency ratios may be
overstated. We also note that few notable users remain
active on the hashtag in our data: only one of eight notable
Anti-GG users remained active, and only six of fourteen
notable Pro-GG users tweeted with the hashtag in Aug–Sep
2015. These outcomes lead us to the following conclusion:
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Newly-Active, Remaining,
and all active users in 2015.

Result 6. We find several factors are correlated with con-
tinued activity on #GamerGate: level of activity on the
hashtag, level of interaction with other #GamerGate
users, and retweeting of Pro-GG notable users. Given
these results, it seems likely that participation in the Pro-
GG sub-“community” led to continued activity.

4.2 Newly-Active Users
Next, we turn our attention to the complementary group:
users active in 2015 but not 2014, which we refer to as
“newly-active users.” Of the 2615 active users in 2015, 1396
(53.4%) fall into this category. We find that newly-active
users interact less with #GamerGate users. They tend to
retweet about 80% as often as remaining users (p ≈ 0,
c = 0.56, r = 0.18), with a similar pattern shown in their
mentions (p ≈ 0, c = 0.52, r = 0.13). Further, these
users also retweeted #GamerGate users 44% as frequently
as remaining users (p ≈ 0, φ = −0.18). The average
newly-active user retweeted #GamerGate users 2.5 times—
less than half of the 5.7 times a remaining user retweeted
the same group (p ≈ 0, c = 0.60, r = 0.34). A similar
pattern holds for mentions: newly-active users mention GG
users 3.7 times on average, significantly less than the 6.7
times remaining users do so (p ≈ 0, c = 0.52, r = 0.25).
Coupled with the result that newly-active users retweet
notables marginally less (p ≈ 0, c = 0.36, r = 0.19)
and in particular Pro-GG notables marginally less (p ≈ 0,
c = 0.27, r = 0.13), it seems likely that the newly-active
group is simply less active overall. The lack of interaction
with other #GamerGate users stands out, but at the same
time newly-active users are not interacting with outside
users more than #GamerGate users. As a result, we see
from Fig. 12 that the conductance of the complete set of
active users is lower than the set of just remaining users. It
therefore seems likely that these users, while not of central
importance, play a role in the community structure we see.

New Accounts. We notice that of the newly-active users
in our data, 640 (45.8%; 24.5% of all active users) were
also created after #GamerGate’s first use. We refer to this
group simply as new accounts. Figure 11 shows the dis-
tribution of creation dates among newly-active (including
new accounts) and remaining users until the end of 2014.
Note the sharp up-tick in account creations corresponding
to #GamerGate’s first use (28 August, 2014; marked by the
dotted line). A further 35.74% of newly-active accounts
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Fig. 13: Fraction of #GamerGate tweets by accounts created
prior to it, converging toward the median in Aug–Sep 2015.

were created in 2015. Figure 13 shows the proportion of
#GamerGate tweets attributable to accounts that pre-date
this storm. We see a drop down to 90% nearly immediately
after the first tweet, and then a slow downward trend
towards the median of 58.4% seen in our 2015 data.

These new accounts are–in general–not significantly dif-
ferent from other newly-active users. They retweet (p =
0.30, c = 0.47, r = 0.02) and mention (p = 0.21, c = 0.46,
r = 0.02) a similar amount to other newly-active users, and
while they do retweet GG users at a different rate than other
newly-active users (p ≈ 0, φ = −0.03) this translates to an
insignificant difference in the average number of retweets
of GG users (p = 1.26× 10−3, c = 0.43, r = 0.09).
Removing the new accounts from the overall GG group has
a small but significant negative impact on the conductance
(p = 7.32 × 10−7, φ = −0.02), indicating that these users
are mentioned by other active users enough to outweigh the
amount of out-group mentioning done by new accounts.

Lastly, we ask whether these new accounts were likely
to be replacing older (e.g. banned) accounts. Comparing
the screen names of newly-active users to users that were
active in 2014 but not 2015 reveals that 123 newly-active
accounts have at least one inactive account within a Lev-
enshtein distance of 3 when capitalization is normalized.
However, most of these are duds: the old name has little-to-
nothing to do with the new name (consider, as an example
@CasemanXP and @CalemAnnk, which are within a dis-
tance of 3 yet seem unrelated). On the other hand, there
are some number of accounts that do appear to replace the
old: @ trolljackoutis seems to replace @TrollJackOutis and
@TrollJackOutis1, while @sleekit003 replaces @sleekit001.
We find 17 using this heuristic, with another 11 that appear
to replace with no changes aside from capitalization. While
this test is obviously imperfect—there are no rules stating
that the same users should always pick similar usernames—
if the replacement of old accounts was a common applica-
tion of new accounts, we’d expect to see much more than a
mere 1.96% of new accounts being apparent replacements.
The result below summarizes our conclusion:

Result 7. There is a sizable contingent of newly-active user
accounts on #GamerGate in Aug–Sep 2015. These users
tend to have newer accounts, to interact less with others
in general, and to interact with other #GamerGate users
less in particular. Despite this, their inclusion appears to
support the community structure.
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5 RELATED WORKS

#GamerGate itself has seen little examination in the com-
puting literature. Much of the existing work uses it merely
as a source for labelled data rather than an object of study.
Our primary point of comparison is the recent work by
Chatzakou et al. [6], [21] on the properties of #GamerGate
users ca. 2016. This study differs from their work in two key
ways. First, we use historical data to study #GamerGate’s
growth rather than current data to study the present. Sec-
ond, we focus on the structure of the interaction network
through our analysis of mentions and retweets.

Beyond computing literature, we find further study of
#GamerGate. Mortensen [22] gives a detailed accounting of
the event and its impact, while Massanari [23] provides a
sociological perspective on the role of Reddit’s structure in
supporting toxic cultures–with #GamerGate as an exemplar.
This highlights one key aspect of further study: cross-
platform analysis. While we focus our analysis on Twitter,
#GamerGate also had a significant presence on Reddit.
In particular, r/KotakuInAction was a hotbed of Pro-
GG activity, while r/GamerGhazi became associated with
Anti-GG sentiment. Works exist studying diffusion across
platforms (e.g. [24]). It would be worthwhile to augment
our results with an analysis incorporating Reddit’s impact.

Meanwhile, Salter [25] argues that the abuse seen in
#GamerGate should not be divorced from the platform on
which it takes place. In particular: that platform design
and admistration have an inherent impact on the way it
is used—including usage for abuse. We find this interesting
given that the initial weeks of #GamerGate were met with
the development of new tools (e.g. [26]) to deal with the
influx of harassment. This points to a weakness in Twitter:
the built-in tools addressing harassment simply don’t scale.

Lastly, Salter remarks that #GamerGate was subsumed
into the “alt-right.” We note that several alt-right individ-
uals, including Milo Yiannapoulos and Mike Cernovich,
appear in our set of notable Pro-GG users. Salter claims that
these figures were not instrumental in organizing #Gamer-
Gate, which our results support. However, the presence of
these individuals so early in the hashtag’s lifespan—along
with their impact on continued activity—illuminates the
potential for polarization via campaigns like #GamerGate.

Firestorms as a whole have seen greater study. Pfeffer
et al. [27] examine the causes of firestorms in the context of
marketing. They identify a number of factors contributing to
their explosive growth, including the speed of communica-
tion, lack of diversity leading to a “filter bubble,” and weak
ties leading to unrestrained information spread. However,
we observe that #GamerGate lacks this explosiveness de-
spite other similarities. While our work examines the cause
of it’s longevity, future work examining this substantially
different growth may reveal valuable insight.

Pfeffer et. al.’s work was followed shortly by Lamba et
al. [1], which focused on establishing the common structure
of firestorms. Of particular relevance to our work, they
challenge the notion that firestorms in general have a lasting
effect on network structure. While our results confirm their
observations in the case of the storms we compare to,
#GamerGate belies this understanding.

Interestingly, Lamba et. al. further relate the study of
firestorms to that of news cycles. We find it particularly

notable that the temporal dynamics of the firestorms studied
by Lamba et al. [1] are–at least at a high level–quite similar
to the news cycles studied by Leskovec et al. [28]. While
we have established that #GamerGate has large macro-level
differences from other storms, it may be worthwhile to
examine the role of the news cycle on this event.

Lastly, we remark that #GamerGate is often thought of
in terms of harassment. Matias et al. [29] saw a sizeable
amount of #GamerGate-related reports in their study of
the harassment data from Women, Action, and the Media’s
experiment with an alternate Twitter report process. While
a long line of bullying detection work exists (see [30] and
references therein), we have not seen such work applied to
#GamerGate. This line of work is largely orthogonal to this
paper and is only mentioned for the sake of completeness.

Community detection is one of the most widely-studied
problems in network science. While we differentiate detec-
tion—the task of locating communities on a network—from
testing—the task of evaluating the whether a partition “looks
like” a community—there remains substantial related work.
Fortunato [14] surveys the study of community detection up
through 2010 in great detail. The inferential approaches dis-
cussed within (e.g. [31]) are particularly interesting due to
the ease with which they may incorporate a prior reflecting
the Twitter sampling mechanism.

More recently, Chakraborty et al. [15] completed an
updated survey of community detection metrics. Much of
the literature has been focused on either resolving prob-
lems with modularity (e.g. its resolution limitations [14]
or preference for large, monolithic communities [32]) or
adapting modularity to problem variants (e.g. [33]). While
they find that conductance performs worse at detecting
communities on synthetic networks, they also found it had
one of the highest correlations with their validation metrics
on a sparse, real-world coauthorship network. We note that
the 1% sample of Twitter is extremely sparse.

However, due to the nature of our study much of this
literature is not directly applicable. Our work is closer to
that of Leskovec et al. [16], who evaluated the properties
of real-world communities and elected to use conductance
in a similar manner to our own use. Indeed, they find a
“ubiquitous” nested core-periphery structure. While we did
not examine nested structure, we remark that the structure
shown in Fig. 8 clearly appears to have a core-periphery
structure at the macroscopic level—a structure that modu-
larity is “not well suited” to handle [34].

6 LIMITATIONS

We see three main limitations with this work. First: the
dataset itself. The 1% sub-sample of the overall Twitter
stream imposes constraints on the kinds of analysis that
are practical. As noted in Sec. 3.1, the sub-sampling process
removes most edges. Although we showed that conduc-
tance is relatively robust under this sub-sampling, it is
possible (though, we believe, unlikely) that this caused false
positives or negatives in our analysis of conductance among
various groups. Further, our use of retweets for grouping is
also fundamentally based on edges. This ultimately means
that we must lean heavily on statistical tests to differentiate
between these heavily sub-sampled populations.
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We remark that while works on network reconstruction
(e.g. [35] and references) and inferring latent network struc-
ture [36] exist, the sparsity of this sample combined with
assumptions embedded in prior works precluded direct use.
However, this is an intriguing avenue for further study.

Second, our use of only Twitter data. As noted in Sec. 3
and related work, there was substantial #GamerGate-related
activity on Reddit (see e.g. [23]). Collecting and comparing
this data to our Twitter sample may shed additional light
on the structure of this event. In particular, an analysis of
r/KotakuInAction and r/GamerGhazi á la Kumar et al.
[37] may provide an important perspective on communica-
tion between Pro- and Anti-#GamerGate groups.

Lastly, we did not take advantage of the text data present
in our sample. Each object in our dataset contains the tweet
text in addition to the other properties we used. While we
believe that our choice to focus on the graphical aspects
provides interesting insight, large-scale study of the text
associated with this event may yield further discoveries.

7 DISCUSSION

So: is #GamerGate different? The answer is clearly yes—
and to such a degree that perhaps a better question is “does
comparing to Lamba et al. [1] make sense?” As a point of
reference, we find prior storms valuable. Key differences,
like #GamerGate’s slow growth or apparent community
structure, are clarified by the comparison even if #Gamer-
Gate was ultimately generated by different mechanics.

One may find closer comparisons in recent storms
like #BlackLivesMatter and #MeToo. These events—at least
on the surface—appear to share the enormous scale and
longevity of #GamerGate, along with political undertones.
Comparative analysis of these events’ structures seems
promising as future work.

Looking to other work, we find other lenses through
which to understand this event. Mortensen [22] connects
#GamerGate to football hooliganism. Like hooligans, she
found that #GamerGaters were self-organizing, often as-
sumed victim status, exhibited hypermasculine behavior,
and were willing to attack the other “team.” The first and
last points are visible in our analysis. We note—based both
on our own and prior work [25]—that it does not appear
that the notable users in our sample led the organization
process, and thus it is reasonable to call this self-organization.

We could also view #GamerGate as a large-scale example
of a negative mobilization (or, more colloquially, raids) be-
tween communities. Recent work found that raids between
sub-reddits exhibited strong homophily [37]: attackers com-
municated almost exclusively with attackers and defenders
with defenders. As with the firestorm lens, this is not a
perfect fit. While we do observe this behavior on the Pro-
#GamerGate side, this pattern is notably absent on the Anti-
#GamerGate side. This may be the result of the situation
noted by technologist Caroline Sinders ([38], quoted in [25]):

Using the hashtag in a tweet became akin to saying
“Bloody Mary” three times in a mirror, except
Bloody Mary actually showed up and she brought
a bunch of friends. People, particularly women
in games, couldn’t talk about Gamergate publicly

without getting harassed, so they just stopped talk-
ing about it on Twitter.

That is: we may not observe communication between
Anti-#GamerGate users because they avoided the hashtag.

Taken together, our results support the findings of prior
work both in computing and sociology. We found evi-
dence for the existance of community structure amongst
#GamerGate users, and found both that this community and
interaction with notable Pro-#GamerGate users were highly
correlated with continued activity. This leads us to conclude
that this community structure played a fundamental role in
the growth and sustenance of #GamerGate.
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