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Abstract

How strong are the connections between individuals? This is
a fundamental question in the study of social networks. In
this work, we take a topological view rooted in the idea of lo-
cal sparsity to answer this question on large social networks
to which we have only incomplete access. Prior approaches
to measuring network structure are not applicable to this set-
ting due to the strict limits on data availability. Therefore, we
propose a new metric, the Edgecut Weight, for this task. This
metric can be calculated efficiently in an online fashion, and
we empirically show that it captures important elements of
communities. Further, we demonstrate that the distribution of
these weights characterizes connectivity on a network. Sub-
sequently, we estimate the distribution of weights on Twitter
and show both a lack of strong connections and a correspond-
ing lack of community structure.

Introduction
Historically, the social networks available to the research
community had been small, manually collected datasets
comprised of individuals interacting—usually in physical
spaces. The rise of online social networks over the past two
decades has changed this, not only increasing the scale but
also the availability of data. In these halcyon days, network
data was (relatively) freely available to researchers—leading
to works that were able to study social networks in their en-
tirety (for example: Twitter; Kwak et al. 2010).

Studies on the scale of Kwak et al. are, unfortunately, no
longer possible. The social network giants have locked down
their systems to prevent malicious data collection, and in do-
ing so have prevented collection of complete network data
by researchers. The inability to collect more data does not
eliminate our research questions, however. We are thus mo-
tivated to seek alternate methods to study the topology of
social networks.

In this work, we propose a novel, purely-local metric to
calculate edge sparsity—a local quantity that measures how
well-connected the endpoints of an edge are. In contrast to
existing metrics, this Edgecut Weight requires relatively little
data and in particular can be calculated directly via social
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network APIs. After exploring the empirical and theoreti-
cal connections this quantity has to existing work, we ex-
ploit this unique property to calculate hundreds of weights
directly on Twitter.

We compare these weights to a number of other networks.
While we do see a core-periphery structure on many net-
works (which agrees with Leskovec et al. 2009), we do not
observe this on either the complete Twitter topology from
2010 or our new data collected in December 2019–January
2020. In fact, we find that this follower network is over-
whelmingly sparse, leading us to question whether commu-
nities (as commonly defined in terms of network topology)
occur on this network at all.

Contributions. Our contributions can be summarized as:

1. We develop a novel random-walk-based quantity, the
Edgecut Weight, that measures edge sparsity. We then
show how it can be efficiently calculated—even when net-
work data is incomplete.

2. We study the empirical and theoretical connections be-
tween Edgecut Weights and prior work. We find that it as-
signs high weights to edges that cross between communi-
ties. Further, we compare it to Edge Betweenness, which
has previously been used for similar purposes, and find
that despite theoretical differences the two metrics have
substantial correlation.

3. We apply our metric to study a range of networks. In par-
ticular, our visualizations clearly show widespread core-
periphery structure, in agreement with prior work. We
then construct a visualization using weights calculated di-
rectly via the Twitter API, and find that this network ex-
hibits a striking lack of dense connections.

Related Works
One of the earliest metrics to be used in the study of network
structure was the conductance, which measures the ratio of
edges leaving a group to edges incident to the group. This
metric sees wide application in the study of real-world so-
cial networks (Leskovec et al. 2009) and has deep ties to the
theory of random walks (Sinclair 1988). However, it is also
infeasible to calculate in a global sense—the conductance of
a graph is the minimum conductance of any subset of the



graph’s vertices—and requires the user to construct a graph
cut a priori to be used in a local context.

Nonetheless it has seen some use in characterizing over-
all network structure. The Network Community Profile
(Leskovec et al. 2009) has previously been used to conduct
analysis of networks that are widely-used in the literature.
The NCP, which shows the conductance of the (approxi-
mately) best community for each size k, was used to show
the prevalence of the “core-periphery” network structure.
Such networks have a dense core along with a large number
of peripheral, highly sparse “whiskers”. However, the NCP
is constructed by running like Metis+MQI to construct the
best community at each scale. While this is tractable when
one has complete data due to the efficiency of such algo-
rithms, it is inapplicable to settings with incomplete data.
As we are interested in measuring connectivity on modern
social networks, we cannot apply this method.

Another classic metric is the transitivity or clustering co-
efficient of a network (Watts and Strogatz 1998). Suppose
the edges (a, b), (b, c) exist. The nodes a, b, c form a trian-
gle, which is called closed the third edge (a, c) exists. Tran-
sitivity is the fraction of triangles which are closed, i.e. it
measures the property of triadic closure (Rapoport 1953).
However, calculation in a global context requires count-
ing triangles—a challenging task, which leads to the use of
heuristics in practice (Berry et al. 2014). The local cluster-
ing coefficient, which only counts the triangles incident to
an individual node, somewhat addresses this—though with
scaling issues of its own. In particular: to calculate the LCC
of a node v, one must look up the neighborhoods of each
neighbor of v—a task that would frequently require tens of
thousands of API calls per node to compute on social media
like Twitter.

The modularity metric seeks to quantify the degree to
which a network may be broken down into well-defined
groups (Newman and Girvan 2004). This metric is quite
popular despite its issues (Chakraborty et al. 2017), in part
because it provides a tractable optimization objective for
scalable community detection (Blondel et al. 2008). How-
ever, modularity is inherently a global metric. In settings
with incomplete access to network data—like our target—
modularity cannot be applied.

Edge weighting methods like ours have also seen use. Per-
haps the most well-known is edge betweenness centrality
(Girvan and Newman 2002), which measures the proportion
of shortest paths that cross an edge. This variation on node
betweenness (Freeman 1977) was used to identify sparse
edges for hierarchical community detection. However, exact
calculation is expensive (at least O(nm) (Brandes 2001))
and not all sparse connections are highly-weighted on the
first pass—requiring an iterative approach that exacerbates
this cost. As a result, the research community rapidly moved
on. The study of approximate betweenness has seen a re-
vival in recent years (Riondato and Kornaropoulos 2016;
Yoshida 2014). However, despite much superior complex-
ity (Riondato and Kornaropoulos is O(r(n + m)), r � m)
these methods remain impractical for very large networks.

One variant that is particularly relevant to our study is
random walk betweenness (Newman 2005). While on the

surface this would appear to be closely related to our work,
there are substantial differences. Random walk betweenness
is defined in terms of the (global) transition matrix of the net-
work, and as such exact computation again has complexity
at leastO(nm). Recent adaptations with improved complex-
ity exist (Kourtellis et al. 2013), though they do not compete
with the work of Riondato and Kornaropoulos in practice.

Moreover, this approach simply uses random walks as
randomly selected paths in place of the shortest paths used
in traditional betweenness. In contrast, we only use random
walks to check for connectivity—a substantial change that
makes calculation much, much more efficient in practice.

Random walks have seen application on problems rang-
ing from network embedding (Grover and Leskovec 2016)
to community detection (Rosvall and Bergstrom 2008) (see
Masuda, Porter, and Lambiotte 2017 for a survey on the sub-
ject). We would like to note that not all local methods are
equal. Spielman and Teng presents the Nibble algorithm for
local community detection, but this method cannot be run
without knowing the total number of edges m on the net-
work (which determines the stopping condition). It is im-
portant to distinguish between methods such as this that re-
quire global meta-knowledge (like edge count) on top of lo-
cal topology from those that only require local topology.

We do note that prior work on community detection via
random walks—including both (Spielman and Teng 2013)
and (Rosvall and Bergstrom 2008)—makes use of the same
property we exploit: random walks tend to remain within
dense regions rather than cross sparse cuts between re-
gions. However, much of this work depends on global meta-
knowledge in a similar manner to Nibble.

Edgecut Weights
Before proceeding with the construction of our method, we
will first review the criteria that inform it. Our overarching
goal is to study the structure of networks to which we have
only limited access. To accomplish this, we will take local
measurements—which are feasible via social media APIs—
in order to build up an understanding of global structures.

Our approach is based on the idea of edge sparsity. Con-
sider an edge e = (u, v). This pair of nodes is sparsely con-
nected if there are few distinct paths to reach u from v (and
visa-versa). We can get a local image of this property by us-
ing random walks to check for connections in the surround-
ing area. Put simply: our method simultaneous walks from
each endpoint of e until one of two things occurs: (a) a walk
reaches a node previously reached by the other (i.e. they in-
tersect at a node), or (b) both walks stop. We use random
stopping, where each walk flips a weighted coin with pa-
rameter 0 < ρ < 1 and stops if it lands on tails, to control
the length of the walks. The edge (u, v) itself is both a trivial
path and by far the most likely to be found by such walks, so
we remove it to measure the surrounding network. Formally:

Definition 1 (Edgecut Walk). Let G = (V,E) be a graph
and e ∈ E an edge on it. A random walk is an Edgecut Walk
and said to be e-adapted if it walks on G′ = (V,E \ {e}).

Definition 2 (Edgecut Weight). Let e = (u, v) be an edge
on G. The edgecut weight of e, denoted γe, is the probability



(a) Multiply-Connected Pair of Small-World Graphs (b) LFR Benchmark Graph

Figure 1: Small sample networks, with edges colored according to Edgecut Weights. Dark color indicates a low weight. Graphs
are (a) a pair of small-world networks with n = 25 (Watts and Strogatz 1998), (b) an LFR community benchmark network
(Lancichinetti, Fortunato, and Radicchi 2008) with n = 100 and a power-law exponent of τ1 = 3.

that a pair of e-adapted walks rooted at u and v that stop
after each step with probability 1 > ρ > 0 do not intersect
(i.e. there is no node reached by both walks).

This definition gives a weight where γe should intuitively
be high when e is sparse, but low when it is not. The awk-
wardness of the definition (“do not intersect”) is in service
of the algorithm we use for calculation, which is presented
in the next subsection.

To illustrate our idea, let us consider communities. Com-
munities are defined both by the density of connections
within and the sparsity of connections between them. Prior
work has exploited the property of random walks to re-
main within dense regions to perform community detection
(Spielman and Teng 2013; Rosvall and Bergstrom 2008;
Viswanath et al. 2010). Fig. 1 shows sample Edgecut
Weights on a pair of small, sythetic networks. While there
is certainly variability among weights within communities,
there is also a visible difference between intra- and inter-
community edges.

Efficient Approximation of Edgecut Weights
Analytic calculation of even a single edgecut weight γe is
infeasible outside of the simplest cases. However, these ran-
dom walks are trivial to construct and with the application of
existing results on Monte-Carlo sampling, we can construct
an approximation extremely efficiently.

Observe that if we sample a pair of e-adapted walks, there
are two possible events: they intersect (Z = 0) or they
do not (Z = 1). The probability Pr [Z = 1] is equal to γe
by definition. This is a Bernoulli random variable, and thus
Pr [Z = 1] = E [Z] = γe. We can therefore use the sample
mean γ̃e =

∑n
i=0 Zi of a sequence of samplesZi to estimate

the true mean γe. Our samples in this case are {0, 1} values
representing the intersection (or lack thereof) of walks con-
structed according to Def. 2.

The EBGStop algorithm (Alg. 1; Mnih, Szepesvári, and
Audibert 2008) can be used to estimate γe with a near-
optimal number of samples.1 In the Bernoulli case, their re-

1Other algorithms for this problem exist (Dagum et al. 2000)
including specializations for Bernoulli variables (Huber 2017);
EBGStop performed best in our tests.

sults are:

Theorem 1 (Mnih, Szepesvári, and Audibert 2008). Let
Z be a random variable distributed in [0, 1] with mean
µ = E [Z] > 0 and variance σ2. Let µ̃ be the estimate pro-
duced by EBGStop, let T be the number of samples used to
construct it, and let C be a constant. Then if ε, δ ∈ (0, 1) are
user-defined error-bound parameters, we have:

1. Pr [µ(1− ε) ≤ µ̃ ≤ µ(1 + ε)] > 1− δ,

2. Pr
[
T ≥ C max

{
σ2

ε2µ2 ,
1
εµ

}(
log log 1

εµ − log δ
)]

< δ

In other words, the EBGStop algorithm will produce an
estimate γ̃e that is within a factor of 1 ± ε of the true value
γe with probability at least 1−δ, where both ε and δ are user-
specified parameters. Additionally, it guarantees the number
of samples used is at most the complexity given in point (2)
with probability at least 1− δ.

Note that when variance is low, the complexity is linear in
ε−1 and µ−1 as well as logarithmic in δ. That is: it depends
only indirectly on the properties of the local network, and
grows very slowly with changes in µ and only a bit faster
with σ. Also note that an expected δ fraction of edges will
have weights exceeding their error bounds, but due to the
logarithmic scaling it is trivial to set δ to a very small value.
We use δ = 0.01 in our experiments. Additionally, we re-
mark that this theorem makes use of the true mean and stan-
dard deviation, while the algorithm makes use of the sample
mean X̄t and variance σt at each step t.

To make use of this algorithm, we need to show that our
random variable has a non-zero expected value.

Lemma 1. Let Z be 1 if a pair of e-adapted walks with
stopping probability ρ rooted at the endpoints u, v of e do
not intersect and 0 otherwise. Then E [Z] > 0 unless u = v.

Proof. Due to the constraint that ρ > 0, there is a non-zero
probability that each walk stops immediately. Thus, there
will always be some portion of walks that do not intersect.
As a result, the expected value is non-zero.

Thus, the EBGStop algorithm is applicable to estimation
of Edgecut Weights.
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(a) GrQc (Q ≈ 0.86)
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(b) Slashdot (Q ≈ 0.41)
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(c) #GamerGate (Q ≈ 0.27)
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(d) Facebook Pages (Q ≈ 0.80)

Figure 2: Top: Distribution of Edgecut Weights as a function of ρ. Bottom: Distribution among edges that are cross communities
(orange, dashed) identified by the Louvain algorithm, along with overall distribution (solid). Each edge appears in the Louvain
distribution once for each time cut across 100 runs. The average modularity Q across all runs is shown.

Algorithm 1 EBGStop for Z ∈ {0, 1} (Mnih et. al. 2008)

1: LB ← 0, UB ←∞, t← 1, k ← 0, β ← 1.1, p← 1.1
2: Sample Z1

3: while (1 + ε)LB < (1− ε)UB do
4: t← t+ 1
5: Sample Zt
6: if t > floor(βk) then
7: k ← k + 1
8: α← floor(βk)/floor(βk−1)
9: dk ← δ(1− 1/p)/(logβ k)p

10: x← −α log dk/3

11: ct ← σt
√

2x/t+ 3x/t
12: LB ← max(LB, |X̄t| − ct)
13: UB ← min(UB, |X̄t|+ ct)

14: return 1/2 · [(1 + ε)LB + (1− ε)UB]

The Behavior of Edgecut Weights
We next empirically examine the behavior of Edgecut
Weights along two axes: efficiency and correctness. Ef-
ficiency is evaluated relative to (approximate) calcula-
tion of Edge Betweenness Centrality. Correctness is—
unfortunately—harder to directly evaluate. We take a mul-
tifaceted approach to doing so.

First, we compare to communities produced by the Lou-
vain method (Blondel et al. 2008). If the Edgecut Weights
are behaving as intended, the edges that cross between the
detected communities should have high weights. We quali-
tatively find this to be the case on many networks.

Second, we compare to Edge Betweenness Centrality

Table 1: Datasets used in our comparison. All data is taken
from SNAP (Leskovec and Krevl 2014) unless otherwise
noted.2 All networks are treated as undirected.

Name Kind n m

GrQc Collab. 5,242 14,496
HepPh Collab. 12,008 118,521
NetHept Collab. 15,229 31,376
DBLP Collab. 317,080 1,049,866

#GamerGate Interaction 13,188 182,176
Enron Email Interaction 36,692 183,831
EU Email Interaction 34,845 99,074
Wiki Talk Interaction 2,394,385 4,659,565

Facebook Pages Social 22,470 171,002
Slashdot (2009) Social 82,168 582,533
Orkut Social 3,072,434 29,424,825
Twitter (2010) Social 41.7M 1.47B

(Girvan and Newman 2002), which is one of the few edge-
weighting methods to have seen prior use for partitioning
problems. While betweenness is an imperfect match, it has
the similar property that cut edges should have high weight
(this idea underpins the classical Girvan-Newman commu-
nity detection method). Thus, we should see some level of
correlation between the two quantities.

2Twitter is from (Kwak et al. 2010). #GamerGate is the sparse
Twitter interaction network of #GamerGate users from (Smith and
Thai 2019). NetHept is from (Chen, Wang, and Yang 2009). EU
Email includes only nodes observed as both sender and recipient.
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Figure 3: Sensitivity to choice of ε. Relative error is esti-
mated on GrQc against a randomly selected run with ε =
0.01. Data for 10 runs is shown, with whiskers extending
to the 99th percentile. The red dashed line shows the error
margin guaranteed with probability 1− δ = 0.99.

The Weight of Cut Edges
We will begin with a comparison to the Louvain method.
This algorithm is a heuristic community detection method
that operates by maximizing modularity. Despite being a
heuristic, it is widely used and well-regarded.

Our goal is to determine whether the edges that cross be-
tween communities (or cut edges) by this method have high
Edgecut Weight. Intuitively, this should be the case if the
quantity performs as desired. This is somewhat complicated
by the fact that Louvain is order-dependent: if the same
topology is input in a different order, the solution changes
(despite being otherwise deterministic).

We deal with this by shuffling the input networks and
comparing both (1) which edges are cut, and (2) how fre-
quently different edges are cut. Unless specified otherwise,
we estimate the Edgecut Weight with ρ = 0.2, ε = 0.2
and δ = 0.01. Fig. 2 compares the overall distribution of
weights to the distribution of weights among edges that are
cut among 100 shuffled solutions.

From Fig. 2a, 2b and 2d we can clearly see that this hy-
pothesis holds. However, Fig. 2c (which uses ρ = 0.05 for
visibility) shows an apparently contradictory case. Upon in-
spection the Louvain method cuts well over half of all edges
on this network each time, resulting in a very low modularity
of 0.27. Combined with repeated runs and inconsistent cuts,
the outcome is that nearly all edges (save those in the left
tail) are cut by the Louvain method on this network. This
network is built from a 1% sample of Twitter interactions,
and is dominated by a singular community (Smith and Thai
2019). Thus, the inability of the Louvain method to further
subdivide it is not altogether surprising.

Interestingly, decreasing the stopping probability ρ ap-
pears to have minimal impact on Slashdot compared to the
other networks (c.f. Fig. 2b). While the other networks see
fairly dramatic shifts towards lower weights (i.e. more inter-
sections), we continue to see a heavily skewed distribution
on Slashdot. This does not appear to be a symptom of our
choice of error margin ε. Fig. 3 shows the actual relative er-
ror on GrQc. Note that it decreases much more rapidly than
ε. This is not altogether surprising: approximation guaran-

tees are often conservative.

Correlation with Edge Betweenness
Next, we examine the relationship between Edgecut Weights
and Edge Betweenness Centrality. Edge Betweenness
weights are notable for their use in community detection
(Girvan and Newman 2002), though despite numerous ex-
tensions a scalable method of calculating them has yet to be
found. Within this section, we additionally compare to the
state of the art approximation method for Edge Betweenness
(Riondato and Kornaropoulos 2016).

We use our own implementation of each method, in no
small part to take advantage of parallelism. The methods
of (Brandes 2001) and (Riondato and Kornaropoulos 2016)
are parallelized by running the main loop on t threads, and
accumulating result vectors. We validated the weights con-
structed by our parallel implementation against those of the
igraph package (Csardi and Nepusz 2006). Our method
is trivially parallelized across t threads on a per-edge basis.
The source code for each method is available online.3 Un-
less specified otherwise, we fix δ = 0.01, ρ = 0.2, ε = 0.2.
For the method of Riondato and Kornaropoulos, we use the
relative error bound given in their work with ε = 0.2 that
reduces to an additive bound on weights below q = 0.01.

We calculate correlation with Kendall’s rank-order coef-
ficient τ (Zwillinger and Kososka 2000) as implemented in
the SciPy package (Jones et al. 2001). τ ranges from −1 to
+1, with 0 indicating no correlation, +1 indicating that ele-
ments are ranked in identical orders by both metrics, and−1
indicating exactly inverted orderings. τ also has the prop-
erty that the fraction of correctly ordered pairs is equal to
τ + (1− τ)/2. As a result, when τ = 0.5 exactly 75% of all
pairs agree in both orderings.

Table 2 illustrates two key results. First and foremost: on
many networks, Edgecut Weights display a correlation that
is competitive with the state-of-the-art approximation—even
outperforming it on two networks (Slashdot, DBLP). How-
ever, this is coupled with notably poor correlation on the
#GamerGate and Facebook Pages datasets. Given the de-
gree of centralization among weights on the #GamerGate
network—especially with ρ = 0.2, as used in this table—the
low correlation is not particularly surprising. Betweenness is
a ranking metric, and so will always produce a spread distri-
bution. When Edgecut Weights do not, we expect the corre-
lation to be low. The performance gap between the methods
is also quite clear, especially on a large network like DBLP.

Not shown in the above are the results on the Twitter data.
We ran our method and attempted to run Riondato and Ko-
rnaropoulos on this data on a large server4 with 70 threads.
While our method completed in 5h 9m, R&K did not com-
plete in a reasonable timeframe and was stopped at 24 hours.

Interestingly, we further find that the correlation between
Edgecut Weights and Edge Betweenness is strongest among
low-weighted edges (c.f. Table 3). This contrasts with prior
methods for approximating betweenness, which focused on

3https://gitlab.com/emallson/edgecuts
4This network is larger than main memory on the machine used

to run the other tests.
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Figure 4: Running time of Edgecut Weights and (Riondato
and Kornaropoulos 2016) on each network in Table 1. Bran-
des’ method is not run on BTC or Orkut.

Table 2: Correlation (τ ) with & Speedup over Edge Be-
tweenness Centrality. Values are listed as mean ± standard
deviation over 10 runs. Speedup is measured by comparing
the wall-clock times when run with 8 threads.

Dataset τ Speedup
EW GrQc 0.47 ±0.00 164.00 ±9.92

Slashdot 0.38 ±0.00 501.50 ±37.72
#GG 0.02 ±0.00 94.17 ±18.67
FB Pgs. 0.17 ±0.00 119.56 ±25.14
DBLP 0.48 ±0.00 1,650.29 ±161.48

R&K GrQc Not Run
Slashdot 0.36 ±0.01 13.61 ±1.29
#GG 0.42 0.00 3.69 0.05
FB Pgs. 0.57 0.00 4.42 0.08
DBLP 0.38 ±0.01 41.02 ±2.88

the highly-weighted edges used by the Girvan–Newman
method. On the whole, these results indicate that while both
metrics measure similar things, they are not interchangeable.

Conductance, Centrality, and Edgecut Weights
As indicated above, there is a fundamental connection
shared by both Edgecut Weights and Edge Betweenness:
they identify sparse cuts. In this section we explore the the-
oretical relation between the two by way of conductance. In
particular, we find that (1) betweenness has close relation-
ship with conductance on highly-weighted edges, while (2)
Edgecut Weights are related solely to local properties. To

Table 3: Overlap of the top and bottom 10% of each ordering
with the Edge Betweenness.

Jaccard Index
Dataset This Work Riondato et al.

Slashdot Top 0.06 0.25
Bottom 0.49 0.05

DBLP Top 0.16 0.33
Bottom 0.46 0.05

begin, let us review the definition of Edge Betweenness.
Definition 3 (Edge Betweenness Centrality). Define σst as
the number of shortest paths from vertex s to vertex t on a
graph G = (V,E). Likewise define σst(e) to be the num-
ber of those paths containing edge e ∈ E. Then the edge
betweenness centrality of e is

c(e) =
∑
s6=t∈V

σst(e)

σst

We can directly show that the edges in a sparse cut will
typically have higher betweenness centrality than edges in
more densely-connected regions. Let us begin with a simple
(but useful) lemma:
Lemma 2. Define the total betweenness of a set S ⊆ E as

T (S) =
∑
s6=t∈V

σ−1st
∑
p∈Pst

|p ∩ S|

where Pst is the set of shortest paths from s to t. Then

T (S) =
∑
e∈S

c(e)

Proof.

T (S) =
∑
s6=t∈V

σ−1st
∑
p∈Pst

|p ∩ S|

=
∑
s6=t∈V

σ−1st
∑
p∈Pst

∑
e∈p∩S

1

=
∑
s6=t∈V

σ−1st
∑
e∈S

σst(e) =
∑
e∈S

c(e)

where the third equivalence arises from the definition of
σst(e) as the number of shortest paths from s to t on which e
lies. Enumerating the shortest paths p and counting the num-
ber of edges from S that lie thereon is equivalent to enumer-
ating the edges in S and counting the number of shortest
paths on which they lie.

With this, we can prove a stronger result: that high-
centrality cuts put a bound on the conductance of the cut,
and that balanced cuts have the tightest bound. Before that,
we need one more simple lemma.5

Lemma 3. Let x, y, a, b > 0. Then
x+ y

a+ b
<
y

b
⇐⇒ x

a
<
y

b
With this, we can prove the main result of this section:

Theorem 2. Suppose a connected, undirected, unweighted
graph G = (V,E) is divided into disjoint connected com-
ponents A,B ⊂ V by a cut C ⊂ E, where the partition
defined byA has fewer edges than the one defined byB. De-
fine c̄(S) = T (S)/|S| as the mean betweenness of the edges
e ∈ S ⊂ E. Let E(A) be the set of edges with both end-
points in A and Φ(A) be the conductance of A. Then when

c̄(E(A)) < c̄(C)

we have

Φ(A) = Φ(B) <
T (C)

2 [T (E(A)) + T (C)]
5The proofs of Lemma 3 and Theorem 3 are in the appendix.



Proof. By Lemma 3, we know that

c̄(E(A)) < c̄(C) =⇒ c̄(E(A) ∪ C) < c̄(C)

In other words, we have:

T (E(A)) + T (C)

|E(A)|+ |C|
<
T (C)

|C|

where the numerator follows from the fact that T (X ∪Y ) =
T (X) + T (Y ). Multiplying by 1

2 and rearranging gives

|C|
2(|E(A)|+ |C|)

<
T (C)

2 [T (E(A)) + T (C)]
(1)

Recall the definition of conductance on undirected, un-
weighted networks:

Φ(S) =
|δS|

2 min{|E(S)|, |E(V \ S)|}+ 2|δS|
where δS is the set of edges with one endpoint in S and one
endpoint in Sc.

As a result, we have:

Φ(A) = Φ(B) =
|C|

2 min{|E(A)|, |E(B)|}+ 2|C|
By the statement of the theorem, we know that

min{|E(A)|, |E(B)|} = |E(A)|. Thus, we can simplify
Eqn. (1) to

Φ(A) = Φ(B) <
T (C)

2 [T (E(A)) + T (C)]

In effect, this places a condition on the cut C in relation
to the smaller of the two resulting partitions (A). When the
average betweenness of the cut is higher than that of the par-
tition, we can bound the conductance of the cut in terms of
the total betweenness T (·). In particular: the larger the size
of the smaller partition, the smaller the conductance bound
becomes. Balanced cuts, thus, have the smallest bound.

A converse relation holds by a very similar proof (given
in the appendix):
Theorem 3. Suppose a connected, undirected, unweighted
graph G = (V,E) with n = |V | nodes is divided into dis-
joint connected components A,B ⊂ V by a cut C ⊂ E as
above. Let qA = |A|/n. Define d̄ as the mean distance be-
tween node pairs on G and c̄(S) the mean betweenness of
edges e ∈ S ⊂ E. Then when

qA − q2A
d̄

≥ Φ(A)

we have that

c̄(E(A)) < c̄(C)

When |A| ≈ |B|, the condition 1/(4d̄) ≥ Φ(A) implies
the same result. This is (asymptotically) the lowest bound on
Φ(A) provided by Theorem 3. Note that on many networks
the maximum distance is quite small and that the average
includes exactly m 1s from the m edges. For example, the

maximum distance observed on Twitter as of 2010 was 18,
but 97.6% of users were within a distance of 6 (Kwak et al.
2010). Thus, it appears that this condition will hold in many
cases, linking the two quantities at relatively high levels of
conductance.6

On the other hand, it is easy enough to show that Edgecut
Weights are dominated by local properties.

Theorem 4. Suppose C ⊂ E partitions a graph G into two
connected components. In general, for an e ∈ C γe is not
related to Φ(C)

Proof. Consider the following construction:

e
u vGA GB

Here, the overall graph G may be partitioned into two parts
GA, GB7 by cutting e. Hence, the conductance can be given
in closed form as

Φ(A) = Φ(B) =
1

2 min{|E(A)|, |E(B)|}+ 2

That is: the conductance depends solely on the size of the
smaller partition. Thus, by altering the number of edges in
GA, GB we can assign (nearly) arbitrary values to the con-
ductance of the cut on the range (0, 1/2).

However, observe that γe = 1. There is no way for the
walks to ever intersect. Thus, there is no relationship be-
tween the two values in general.

While this proof addresses the most degenerate case, it is
easy to see the lack of relationship given this result when u, v
are remain connected after the cut: one may place the con-
nection between them arbitrarily far away such that γe ≈ 1
regardless of the true size of GA, GB . Alternately, one may
form a clique containing u, v. In this case, γe depends prin-
cipally on the clique, and alterations to GA, GB will have
negligible impact.

These results help explain the behavior seen in the previ-
ous section: high-betweenness edges will tend to be a part
of balanced, sparse cuts, while Edgecut Weights instead de-
pend on local structures. Interestingly, Table 3 shows that
there is substantial overlap in the bottom end of both met-
rics, which may indicate that low-betweenness edges have a
similar dependence on local structures.

Visualizing Connectivity with Edgecut Weights
In this section, we apply Edgecut Weights to characterize
connectivity on a variety of networks, and explore what
these reveal about the structure of the data. Figures 5, 7 & 9
show the weight distributions of three kinds of networks:

6Note that these are only statements about the average cen-
trality. Given prior results (Girvan and Newman 2002; i.e. “there
is no guarantee that all of [the edges on a cut] will have high
betweenness—we only know that one of them will”), a similar re-
sult for individual centrality seems unlikely.

7The graphic slightly abuses this notation—u, v should also be
members of GA, GB .
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Figure 5: Empirical CDFs of collaboration networks. Edges
represent coauthorship.

research collaboration, friendship (or what are typically
termed “social networks”), and social interaction. These are
drawn as cumulative distribution plots, as they are a compact
and rich means of representing an empirical distribution.

We will begin by exploring the features of these visual-
izations that highlight topological structures. Then, we will
briefly discuss our method to construct a distribution esti-
mate on the Twitter network ca. December 2019. Finally,
we will delve into the similarities and differences between
different kinds of networks as shown in these figures.

Properties of the Weight Distributions
Skewness. The first and most basic property to consider

is how skewed the distribution is. Contrast GrQc and DBLP
(Fig. 5), which ascend smoothly from low weights to high
weights, to Orkut and Twitter (Fig. 7). The former are ex-
amples of spread distributions with minor rightward skew;
the latter exhibit extreme skew, with only a minimal tail.

Intuitively, such a skewed distribution indicates a lack of
dense regions in the network, while a spread distribution
shows the presence of regions at multiple density levels. This
is supported by the transitivity8 of these networks: where
GrQc (0.36) and DBLP (0.12) have relatively high transitiv-
ity, Orkut (0.02) and Twitter (2010; 8.84× 10−4) do not.

Shape. The potency of distributional plots is perhaps
most clearly evidenced by the overall shape. We have al-
ready commented on the extremities—nearly-level spread
and extreme skew—but greater details are contained. Con-
sider NetHept (Fig. 5): this network has two steep ascensions

8The fraction of triangles (u, v), (v, w) for which the third
edge (u,w) exists. Such triangles are said to be “closed.” We use
igraph (Csardi and Nepusz 2006) to calculate this.

0 0.25 0.50 0.75 1
Edgecut Weight

0

5

10

D
en

si
ty

(a) Edgecut Weight Dist. (b) Topology

Figure 6: The distribution of edgecut weights on NetHept
along with the network topology. Fig. (b) drawn with Gephi
(Bastian, Heymann, and Jacomy 2009); layout computed
with OpenOrd (Martin et al. 2011).

shown with ρ = 0.05. The first occurs around a weight of
γ = 0.1, and the latter around γ = 0.8. This bimodal distri-
bution indicates that it is closer to an idealized network with
communities: densely connected regions (in the low-weight
hump) coupled with sparse connections between.

For clarity, we plot a histogram of NetHept (Fig. 6a). The
spike at low weights is easily visible, as are spikes at around
0.8 and 1. The topology of the network (Fig. 6b) gives some
insight into why this occurs: we can see a dense region
around the center of the drawing that likely corresponds to
the low-weight edges. Similarly, we see a relatively smooth
transition from the central region out towards the highly
sparse outer edges of the network. This is reflected in the
relatively smooth transition of weights shown in Fig. 6a.

Meanwhile, other networks exhibit a steep “elbow” shape.
Take Enron Email as an example (Fig. 9). In contrast to the
extremely skewed networks discussed previously, this net-
work has a heavy tail of low-weight edges. In this case, it
appears that much of the network is fairly sparse with one
or more smaller dense regions. Slashdot (Fig. 7) and HepPh
(Fig 5) both display similar structures, with varying amounts
of the distribution in the low-weight tail.

We remark that the similar structure between the Slash-
dot and HepPh networks is not indicated by other metrics:
the two differ in transitivity by over an order of magnitude
(8.17× 10−3 and 0.39, respectively). The same holds for
the average local clustering coefficient (0.06 and 0.61). De-
spite this, the two have remarkable similarities. Both net-
works (see Fig. 8) have clearly visible cores—shown as
the low-weight part of the elbows—with varying levels of
density as they progressively transition to “peripheral” re-
gions. We can additionally see the relative steepness of this
transition represented in both plots: HepPh has a smoother
transition from the core, while Slashdot has a stark gap be-
tween regions along with multiple distinct cores. This kind
of core-periphery structure is widespread in large networks
(Leskovec et al. 2009), so the commonness of this elbow
shape is unsurprising.
ρ-Sensitivity. Recall that the fundamental idea underly-

ing this measurement process is that we are cutting an edge
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Figure 8: Two networks that display “elbow-shaped” weight
distributions (see Fig. 5 & 7).

(u, v). The parameter ρ then controls the range within which
we search for alternate routes from one endpoint to the other.
By varying ρ, we can gain insight into the differences be-
tween short- and long-range connections on a network.

For example: the Orkut and Slashdot networks see mini-
mal change in distribution as ρ decreases (with the average
walk length increasing from 5 to 20; 20 is more than double
the average distance between node pairs on every network
we study). This indicates that the intersections observed with
large ρ are the bulk of intersections observed with smaller
ρ—in other words: when alternate routes are found, they are
found nearby. That Orkut and Twitter see little change as ρ
increases and are so heavily skewed indicates that the net-
works are only sparsely connected both locally and globally.

In contrast, we see a substantial increase in the number of
intersections on networks like GrQc, NetHept, and #Gamer-
Gate. This shows that these networks have redundant routes
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Figure 9: Empirical CDFs of interaction networks. Edges
represents a (multiplicity of) interactions on social media.

from u to v, but that many of these routes are longer—
meaning walks that are longer on average are more likely
to find them. An interesting aspect of this is the known pres-
ence of “hub” or “central” users on the #GamerGate network
(Smith and Thai 2019). A critical mass of walks reaching
these hub users may be responsible for the abrupt decrease
in weights as ρ decreases.

Weight Distribution Estimation via the Twitter API
As highlighted previously, one of the strengths of our ap-
proach is the dependence on purely local information. In
particular: the only requirement to calculate an Edgecut
Weight is that you can obtain a list of neighbors for a node.
The Twitter API gives access to this information, allowing
us to calculate Edgecut Weights directly on Twitter. This,
in turn, allows us to produce the plot shown in Fig. 7.

In order to estimate a distribution, one needs independent
samples. We accomplish this by taking uniform samples of
edges as follows: we first uniformly sample a user on the net-
work, then take an adjacent edge at random. The weight of
this edge is then calculated and recorded. As Twitter moved
all identifiers to the non-contiguous Snowflake ID system
in 2010 (Kergl, Roedler, and Seeber 2014), simple rejection
sampling is impractical to construct our uniform user sam-
ple. Instead, we used a MCMC-style approach (detailed in
the appendix). In total, we calculate the weights of 288 edges
with ρ = 0.2 and an additional 124 edges with ρ = 0.1.

Our results clearly show that the connectivity of Twit-
ter has not changed much in the intervening decade, as the
skewed distribution remains with both values of ρ. We note
that the ρ = 0.2 distribution is less skewed than its ρ = 0.1
counterpart in this case, though this is almost certainly a
product of variance in sampling. However, even in this case



we do not observe any weights below 0.70 and again nearly
90% of weights are indistinguishable from 1.

Connectivity as an Image of Social Processes
In the course of this study, we observe a number of sim-
ilarities in the distributions within network types. Perhaps
the clearest example of this is the contrast between collab-
oration networks, which tend to be spread with many low-
weight edges, and friendship (or: social) networks, which in-
variably have a steep elbow shape and tend to be insensitive
to ρ. Though each has exceptions (HepPh displays an elbow
shape, while Facebook Pages (Fig. 2) lacks the skewness of
other friendship networks), the similarities remain striking.

Social networks are, fundamentally, an image of some un-
derlying social process. This is by definition, and in the au-
thors’ view a fundamental aspect of why they are interesting.
These figures indicate that the connectivity in particular can
us a great deal of insight into the structure of the social pro-
cesses which produces this network data.

Take, for example, the skewness of the friendship net-
works. This skewness is a direct product of an absence of
triangles—a lack which contradicts the widespread idea that
triadic closure (Rapoport 1953) applies to “friend“ links
on modern social media (e.g. Boshmaf et al. 2011; Golder
and Yardi 2010). Triangles are further closely connected to
(topological) communities (Prat-Pérez, Dominguez-Sal, and
Larriba-Pey 2014). To be almost entirely absent indicates
a distinct lack of communities in these social networks—
including Twitter. Though other tools allow one to reach
such conclusions on complete data, our approach is the first
to extend them to the current Twitter network.

In contrast, the interaction networks seen in Fig. 9 dis-
play much greater density. Interestingly, only the Enron
Email network displays a clear elbow shape, while Wiki
Talk appears to follow a similar pattern with a relatively
sparse core. Both #GamerGate and EU Email display simi-
larly abrupt decreases in weight distribution as ρ decreases.
We believe this is due to “hub” users (whose presence
is known a priori for #GamerGate) introducing a large
number of intersections. On the whole, the substantially
higher density shown on these networks is in agreement
with prior work that has found evidence of communities
on interaction networks (DeMasi, Mason, and Ma 2016;
Smith and Thai 2019).

Discussion
In this work, we have presented a novel means to measure
and visualize connectivity on large (social) networks, and
subsequently applied this to study the structure of multi-
ple networks—including new results on the relationship be-
tween Twitter in 2010 and 2019. Our theoretical results fur-
ther illuminate the connection between Edge Betweenness
and globally balanced sparse cuts—and how the local focus
of Edgecut Weights leads to differing behavior.

This differing behavior is a side-effect of our focus on
measuring local quantities. While this focus is clearly ben-
eficial given the constraints of studying modern social net-
works, we are curious the extent to which the locality of

measurements can be relaxed without sacrificing the purely-
local computation. The distributions we use to qualitatively
analyze these networks provide insight into global structure
based on purely-local measurements, but we believe that fu-
ture work may be able to make much stronger statements
through more complex structured approaches to sampling.

Further, we are interested in further exploration of the dif-
ferences between interaction and friendship networks. Our
results here indicate that they have substantial structural dif-
ferences, with a striking lack of dense regions that would
indicate communities on the large friendship networks—
and thus that researchers likely should not seek information
on communities from the topology of these networks. We
would particularly be interested in comparing the prevalence
of triadic closure between interaction and friendship net-
works, as this property has long had ties to theories of friend-
ship formation and community growth (Rapoport 1953) and
continues to see application in computational-social work.

On the whole, our work gives a novel and efficient way of
measuring connectivity on large networks that has applica-
tions both in qualitative analysis (as we have done here) and
may have use in the development of efficient algorithms for
network optimization (as Edge Betweenness has been used
in prior work). Additionally, our results advance the state of
knowledge of online social systems, and have potential to do
so again in further studies.
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Twitter Weight Estimation Methodology
As noted in the main text, we take a sampling approach to
estimating the distribution of weights on Twitter. In particu-
lar: we construct a uniform sample of edges, then calculate
their weights. Our methodology is detailed here.

As Twitter does not explicitly represent edges as objects,
we construct our edge sample by first selecting a user uni-
formly at random, and then selecting one of their friends or
followers at random. This pair then forms an edge. Histori-
cally, one would use simple rejection sampling on the user
ID space (i.e. generate an ID, check if it exists, and if not “re-
ject” it and take another sample) to obtain a uniform sample
of users. However, the changeover to 64-bit non-contiguous
Snowflake IDs in 2010 (Kergl, Roedler, and Seeber 2014)
means the ID space is too sparse for this approach.

Instead, we take an MCMC-style approach. We use a
set of 4 parallel Metropolis-Hastings Random Walks, which
asymptotically produce a uniform sample of nodes on the
network, to construct the user sample. MHRWs are known
to be a very efficient choice for this in practice (Gjoka et al.
2010). Our walks are rooted at users selected uniformly at
random from the 1% sample of Twitter activity during Octo-
ber 2019, and we only begin sampling from them after they
have converged to the uniform distribution. Convergence is
declared when R̂ < 1.02 (see Brooks and Gelman 1998 for
details). To limit the impact of autocorrelation between sam-
ples, we “thin” the random walks by keeping only every 10th
sample and discarding the rest.

An additional challenge is the presence of users
with extremely large numbers of followers. For exam-
ple: @neiltyson—whose profile introduced us to this
problem—has over 13 million followers, which would take
a minimum of 27 days to enumerate with a single API key.
We strike a balance: if a node has enough neighbors to re-
quire more than an hour of API time (300,000 neighbors),
the walk backtracks to the previous node. A similar method
is used to deal with “protected” users, whose neighbors can-
not be enumerated via the API. The simple stopping walks
used in calculating weights instead stop at these nodes.

Miscellaneous Proofs
Proof of Lemma 3
Proof. We will begin with the forward ( =⇒ ) case. Assume
the contrary: that x+y

a+b < y
b but x

a ≥
y
b . Then y ≤ xb

a .
Observe that there is a c ≥ 0 so that y + c = xb

a . Therefore:

x+ xb/a− c
a+ b

<
x

a
− c

b

Multiplying both sides by a+ b, we get:

x+
xb

a
− c < x+

xb

a
− ca

b
− c =⇒ 0 < −ca

b

but a, b > 0 and c ≥ 0, so − cab must either be a negative
value or zero. In either case, we have a contradiction.

Now let us consider the reverse ( ⇐= ) case. Again, as-
sume the contrary: x

a < y
b but x+y

a+b ≥
y
b . As a result, we

have x + y ≥ ya
b + y =⇒ x ≥ ya

b . There is once again a
c ≥ 0 s.t. equality holds. Substituting this, we obtain

ya/b+ c

a
<
y

b
=⇒ y

b
+
c

a
<
y

b
=⇒ c

a
< 0

However, c ≥ 0 and a > 0—giving a contradiction.

Proof of Theorem 3
Proof. Our proof is based on the construction of the condi-
tion. First, observe that

d̄ =
∑
s6=t∈V

d(s, t)
1
2n(n− 1)

= 2
T (E)

n(n− 1)

due to the fact that |p ∩ E| = |p| = d(s, t) in the definition
of T (E) (c.f. Lemma 2). Thus, we have the condition:

2

(
T (E)

n(n− 1)

)(
n2

n|A| − |A|2

)
≤ Φ(A)−1

by substituting this and the definition of qA into the inverted
relation. Simplifying and using the identity |A|(n − |A|) =
|A||B|, we get:

2

(
T (E)

|A||B|

)(
n

n− 1

)
≤ Φ(A)−1 (2)

The definition of conductance used in Thm. 2 allows us to
rewrite Eq. (2) as

2

(
T (E)

|A||B|

)(
n

n− 1

)
≤ 2 min{|E(A)|, |E(B)|}+ 2|C|

|C|
We then apply the fact that n

n−1 > 1 to convert this into a
strict inequality, then simplify and rearrange to get

T (E)

min{|E(A)|, |E(B)|}+ |C|
<
|A||B|
|C|

≤ T (C)

|C|
= c̄(C)

Observe that we can replace min{|E(A)|, |E(B)|} with
|E(A)| without increasing the left-hand side, and thus:

T (E)

|E(A)|+ |C|
< c̄(C)

We can simplify this further by multiplying by T (E(A) ∪
C)/T (E(A) ∪ C) and rearranging, giving us

c̄(E(A) ∪ C)
T (E)

T (E(A) ∪ C)
< c̄(C)

We use the fact that the fractional term is trivially greater
than one to eliminate it, and then apply Lemma 3 to obtain

c̄(E(A)) < c̄(C)

A symmetric argument can be made for B.


